3.696 \(\int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=151 \[ \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {10 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d} \]

[Out]

2/7*B*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*A*sin(d*x+c)/d/sec(d*x+c)^(3/2)+10/21*B*sin(d*x+c)/d/sec(d*x+c)^(1/2)+
6/5*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*s
ec(d*x+c)^(1/2)/d+10/21*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)
)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3238, 3787, 3769, 3771, 2641, 2639} \[ \frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {10 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/Sec[c + d*x]^(5/2),x]

[Out]

(6*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (10*B*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*B*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*A*Sin[c + d*x
])/(5*d*Sec[c + d*x]^(3/2)) + (10*B*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx &=\int \frac {B+A \sec (c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=A \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx+B \int \frac {1}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} (3 A) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} (5 B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} (5 B) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (3 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {6 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} \left (5 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {6 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {10 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.56, size = 99, normalized size = 0.66 \[ \frac {\sqrt {\sec (c+d x)} \left (\sin (2 (c+d x)) (42 A \cos (c+d x)+15 B \cos (2 (c+d x))+65 B)+252 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+100 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{210 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(252*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 100*B*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2] + (65*B + 42*A*Cos[c + d*x] + 15*B*Cos[2*(c + d*x)])*Sin[2*(c + d*x)]))/(210*d)

________________________________________________________________________________________

fricas [F]  time = 1.72, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B \cos \left (d x + c\right ) + A}{\sec \left (d x + c\right )^{\frac {5}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{\sec \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 0.74, size = 290, normalized size = 1.92 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-168 A -360 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (168 A +280 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-42 A -80 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+
(-168*A-360*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(168*A+280*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(
-42*A-80*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/
2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \cos \left (d x + c\right ) + A}{\sec \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(1/cos(c + d*x))^(5/2),x)

[Out]

int((A + B*cos(c + d*x))/(1/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________